Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding
نویسندگان
چکیده
We present a deep learning framework for probabilistic pixel-wise semantic segmentation, which we term Bayesian SegNet. Semantic segmentation is an important tool for visual scene understanding and a meaningful measure of uncertainty is essential for decision making. Our contribution is a practical system which is able to predict pixelwise class labels with a measure of model uncertainty. We achieve this by Monte Carlo sampling with dropout at test time to generate a posterior distribution of pixel class labels. In addition, we show that modelling uncertainty improves segmentation performance by 2-3% across a number of state of the art architectures such as SegNet, FCN and Dilation Network, with no additional parametrisation. We also observe a significant improvement in performance for smaller datasets where modelling uncertainty is more effective. We benchmark Bayesian SegNet on the indoor SUN Scene Understanding and outdoor CamVid driving scenes datasets.
منابع مشابه
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Scene Segmentation
We present a novel and practical deep fully convolutional neural network architecture for semantic pixel-wise segmentation termed SegNet. This core trainable segmentation engine consists of an encoder network, a corresponding decoder network followed by a pixel-wise classification layer. The architecture of the encoder network is topologically identical to the 13 convolutional layers in the VGG...
متن کاملSqueeze-SegNet: A new fast Deep Convolutional Neural Network for Semantic Segmentation
The recent researches in Deep Convolutional Neural Network have focused their attention on improving accuracy that provide significant advances. However, if they were limited to classification tasks, nowadays with contributions from Scientific Communities who are embarking in this field, they have become very useful in higher level tasks such as object detection and pixel-wise semantic segmenta...
متن کاملAn Encoder-Decoder Based Convolution Neural Network (CNN) for Future Advanced Driver Assistance System (ADAS)
We propose a practical Convolution Neural Network (CNN) model termed the CNN for Semantic Segmentation for driver Assistance system (CSSA). It is a novel semantic segmentation model for probabilistic pixel-wise segmentation, which is able to predict pixel-wise class labels of a given input image. Recently, scene understanding has turned out to be one of the emerging areas of research, and pixel...
متن کاملSegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling
We propose a novel deep architecture, SegNet, for semantic pixel wise image labelling 1. SegNet has several attractive properties; (i) it only requires forward evaluation of a fully learnt function to obtain smooth label predictions, (ii) with increasing depth, a larger context is considered for pixel labelling which improves accuracy, and (iii) it is easy to visualise the effect of feature act...
متن کاملAn efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1511.02680 شماره
صفحات -
تاریخ انتشار 2015